
JPF-AWT: Model Checking GUI Applications
Peter Mehlitz, Oksana Tkachuk

NASA Ames Research Center
Moffett Field, CA, USA

peter.c.mehlitz,oksana.tkachuk@nasa.gov

Mateusz Ujma∗
Department of Computer Science

University of Oxford, UK
mateusz.ujma@cs.ox.ac.uk

Abstract—Verification of Graphical User Interface (GUI) ap-
plications presents many challenges. GUI applications are open
systems that are driven by user events. Verification of such
applications by means of model checking therefore requires a
user model in order to close the state space.

In addition, GUIs rely extensively on complex and inherently
concurrent framework libraries such as AWT/Swing, for which
the application code merely provides callbacks. Software model
checking of GUI applications therefore needs abstractions of such
frameworks that faithfully preserve application behavior.

This paper presents JPF-AWT, an extension of the Java
PathFinder software model checker, which addresses these chal-
lenges. JPF-AWT has been successfully applied to a GUI front
end of a NASA ground data system.

I. INTRODUCTION

A Graphical User Interface (GUI) is a suitable mechanism
to hide the underlying application’s complexity from the user.
GUIs simplify a user’s task by guiding through a series
of windows, enabling or disabling relevant components and
validating user input before it is processed. While a GUI can
significantly improve the usability of an application, it can also
impose severe challenges for the development and verification
of such applications.

It is important to verify GUI behavior. Examples of GUI
properties may include response requirements (e.g., clicking
on button A opens window B), or checking that the user can
always make progress (i.e., no ”user shutout”). Verification of
GUIs is challenged by a number of GUI-specific aspects:

(1) GUI applications are open event-driven systems that
engage in long running interactions with users and other
software or hardware components. The number of possible
interaction sequences may be too large for manual or even
automated testing.

(2) GUI applications are typically implemented on top of
large frameworks such as Java’s Abstract Window Toolkit
(AWT) [10] or Swing [11] libraries. The application code
mostly provides callbacks for the framework, which is re-
sponsible for obtaining user input and dispatching it to the
respective user interface components such as buttons and lists.
A large part of the verification relevant behavior of the system
under test is defined by the framework, not the application
code itself.

(3) GUI applications are inherently concurrent. Even if the
application itself is not multi-threaded, the framework always

* At the time when this research was conducted, Mateusz Ujma was an
intern at NASA Ames Research Center.

uses multiple processes or threads (e.g., event dispatcher
thread, X server process). On top of the framework concur-
rency, GUI applications have to employ explicit concurrency
for lengthy computations in order to guarantee responsiveness
of the user interface (e.g., the ”0.1 sec rule”). In addition,
large parts of the GUI framework are system global, i.e.,
shared between different applications that should not affect
each other.

Current approaches to GUI validation include unit testing
(e.g., [4], [5], [12]), capture-replay (e.g., [6], [9], [13]), and
model-based testing (e.g., [7], [8], [14]). Unit testing tech-
niques usually test short sequences of user events, largely
created manually. Capture-replay approaches require a user
to record interaction sequences with the GUI and then auto-
matically replay them during testing. Both approaches require
test sequences to be described explicitly, therefore, requiring
large resources to create extensive test suites.

Model-based approaches are capable of producing large sets
of test sequences based on a model specification. For example,
Memon et al. [7], [8], [14] automatically extract directed
graph models, while dynamically executing the GUI, and use
the extracted graphs to generate test sequences. However,
runtime model extraction and testing cannot guarantee full
coverage of the program behavior, especially in the presence
of concurrency.

Model checking techniques are specifically designed to
exercise all possible thread interleavings of the system. How-
ever, in the context of large and complex GUI frameworks,
software model checking has a huge barrier to cross in terms
of scalability. Previous work by Dwyer et al. [2] attempted
to make model checking tractable by aggressively stubbing
out AWT/Swing libraries, as a result producing GUI models
with only one event dispatching thread. This single thread
assumption may not be appropriate for real applications.

In this paper, we present a tool for model checking GUI
applications that addresses the challenges of model checking
GUIs by (1) allowing the user to specify sets of interaction
sequences using a simple yet powerful formal notation, (2)
incorporating support for the actual AWT/Swing libraries, and
(3) employing the model checking engine of Java PathFinder
(JPF) [1], [3] to verify all possible thread interleavings and
input sequences. The tool is called JPF-AWT and is imple-
mented as a JPF extension.

The remainder of the paper is organized as follows: Sec-
tion II presents a motivating example, Section III provides

an overview of the tool design, Section IV discusses the
experience gained while successfully applying the tool to a
NASA ground data system, and Section V concludes.

II. EXAMPLE

To demonstrate the challenges of GUI model checking,
we will use a RobotManager example application that
controls a number of robots. Figure 1 shows the GUI of this
RobotManager application.

user input
event thread

data acquisition
thread

Fig. 1. Robot Manager GUI

The program is used to control four robots, as shown in
the Robots list: RATS-1, RATS-2, RCAT-1 and POGO-1.
Each robot can be online or offline, as indicated within the
respective list entry. The user can enter commands in a text
field; commands can be further attributed by selecting any of
the three FORCED, QUEUED and SINGLE_STEP checkboxes.

The nominal control procedure consists of the following
steps:

1) entering a command

2) selecting command options (if any)

3) selecting a robot from the list

4) sending the command to the robot by means of clicking
the Send button.

By checking the acquire status checkbox, the user
can start a background thread that probes robots for their
online status, and dynamically updates the related entries of
the Robots list as each robot becomes online or offline.

To verify the behavior of the RobotManager example,
one needs to test not only all possible combinations and
permutations of commands and options, but also all possible
thread interleavings between the event dispatcher thread of the
framework and the data acquisition thread of the application.
Especially the second aspect is usually beyond the reach of
traditional testing techniques.

III. TOOL DESCRIPTION

JPF-AWT is implemented as an extension of JPF [3], which
is an open source, explicit state software model checker for

Java bytecode. JPF features its own Java Virtual Machine
(JVM) that is capable of storing, matching and restoring the
state of the executed bytecode program. Off the shelf, JPF can
check for property violations such as deadlocks, data races and
unhandled exceptions, using on-the-fly partial order reduction
and other techniques to reduce the number of program states
that have to be explored. However, JPF’s main quality is to
provide a number of well defined extension mechanisms that
allow

• introduction of new state space branches other than
scheduling points (extensible ChoiceGenerators [3])

• observation of state space exploration events such as
backtracking (Listeners [3])

• abstraction of standard libraries (Model and NativePeer
classes [3])

Our JPF-AWT tool makes use of all three extension mech-
anisms.

Since JPF verifies Java bytecode, JPF-AWT targets GUI
applications that use the standard Java AWT and Swing
framework libraries.

A. Architecture

The main objective for the JPF-AWT design is to check the
application behavior against a potentially large set of different
input sequences, while preserving as much of the GUI frame-
work as possible, which includes threading structure, window
composition and callback notification. This is achieved by
replacing only the low-level, platform-specific parts of the
framework libraries that handle rendering and input acqui-
sition, leaving the application itself completely unmodified.
Figure 2 shows the high-level architecture of JPF-AWT. Since

application

EventDispatcherGraphics

dev/null

unmodified

replaced
(abstracted
 + NativePeers)

GUI framework libraries

user model
(set of event
sequences)

input
script

Fig. 2. JPF-AWT Architecture

most of our targeted program properties are either functional
(assertions), or refer to generic defects such as unhandled
exceptions and race conditions, we ignore graphical output.
This is done by means of providing modeled versions of the
respective library classes such as java.awt.Graphics, to
stub out calls to native rendering code.

We also replace library classes that interface to the platform-
specific windowing system (such as java.awt.Window),
carefully preserving component composition and callback be-
havior.

Conceptually, the main component of JPF-AWT is a re-
placed java.awt.EventDispatchThread which mod-
els non-deterministic user input, using JPF’s NativePeer mech-
anism to interface to a scripting engine.

B. User Input Modeling

Input sequences are specified by means of a simple scripting
language, which uses events as its basic building block,
consisting of a target component identifier, the name of a
method within the related component class, and optional string
or numeric arguments:

$〈componentId〉.〈methodName〉(〈arg〉, . . .)

Component identifiers are either names that are explicitly set
by the application code or labels that are uniquely associated
with the respective component, such as button or text field
labels.

Component identifiers, method names and argument values
can use patterns for string alternatives and character sets,
which are expanded into a set of respective combinations:

< aaa|bbb > ([1− 2])⇒ aaa(1), aaa(2), bbb(1), bbb(2)

The language provides three special constructs: ANY elements
represent non-deterministic input choices to be explored by the
model checker, REPEAT elements are used to specify loops
over event sequences, and NONE events simply advance to
the next sequence event.

Figure 3 shows an example script for the RobotManager
application described in section 2.

// start the data acquisition thread
$acquire_status.doClick()

// enter command into "Command" text field
$Command:input.setText("turn")

// select options checkbox combinations
REPEAT 3 {
ANY { NONE,$<FORCED|QUEUED|SINGLE_STEP>.doClick() }

}

// select a target robot (list selection)
ANY { $Robots:list.setSelectedIndex([0-3]) }

// click on "Send" button
$Send.doClick()

Fig. 3. RobotManager Input Script

JPW-AWT scripts are processed by an interpreter which
stores and restores its internal state by means of a JPF listener.
While the EventDispatchThread is a modeled class that
is executed by JPF, obtaining the next event from the script
interpreter is delegated to the NativePeer of this class, which
executes at the host VM level and can therefore directly access
JPF functions. This mechanism resembles the use of native
methods in a standard Java VM.

The reason for processing script events outside of JPF
executed code is to avoid the creation of event objects that
would alter the program state of the system under test, which
is especially important to close the state space for unbounded
REPEAT loops.

JPF
host JVM

do {
 while(e=queue.getNext())
 dispatchEvent(e)
} while(processScriptAction())

processScriptAction(){
 cg= getNextEventGenerator()
 setNextChoiceGenerator(cg)
 ..
 event= cg.getNextChoice()
 executeEventMethod(event)

EventDispatchThread

JPF_EventDispatchThread

native peer class

application + framework
unmodified classes

ScriptInterpreter

advance/backtrack

store/restore

SearchListener

input
script

system
events

user events

replaced
framework class

native processScriptAction()

Fig. 4. JPF-AWT Input Management

Figure 4 shows the structure of the JPW-AWT input model.
The respective processScriptAction() method

within the EventDispatchThread native peer class
obtains the next input event from the script interpreter,
uses JPF’s reflection mechanism to map the event to
the corresponding method in the target component class,
and then directs the JPF VM to execute this method.
In case the script interpreter returned an ANY element,
processScriptAction() causes JPF to store the
current program state and repeats this process for each choice
within the ANY event set.

The event sequence exploration mechanism of JPF-AWT is
completely orthogonal to other state space branches processed
by JPF. In particular, it does not interfere with JPF’s model
checking for concurrency defects and is therefore well suited
to detect defects that are complex interactions between certain
scheduling sequences and user input combinations.

IV. EXPERIENCE

Using the specification shown in Figure 3, model check-
ing the RobotManager application produces the results
shown in Figure 5. JPF-AWT is able to find a null
pointer exception that is very hard to reproduce using tra-
ditional testing techniques. The exception is caused by a
race condition between the data acquisition thread and the
EventDispatchThread, the first one setting the selected
robot offline right in the middle of the send button click
processing.

Figure 6 shows a deeper analysis of this defect by means
of specialized JPF listener that detects overlapping method
calls on the same object from different threads. The analysis
is performed in a graphical shell for JPF, which is compatible
with JPF-AWT and can even be extended to show JPF-AWT
specific verification reports.

In addition to verifying small examples like the
RobotManager, we applied JPF-AWT to one of the NASA’s
large ground data systems. First, we translated its user models
into the script language defined in Section III. Second, we
defined the application properties using assertions. Assertions
can be as simple as assert errorList.size() == 0

race

thread 2: EventDispatcher

thread 3: data acquisition

thread 2

executes in getOnlineRobot()

returns getOnlineRobot()
processes return value

Fig. 6. Analysis of RobotManager Defect
== error #1
gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty
java.lang.NullPointerException: Calling

’processSequence(Ljava/lang/String;)Ljava/lang/String;’
on null object

at RobotManager.sendSequence(RobotManager.java:265)
...

== statistics
elapsed time: 0:00:03
states: new=1320, visited=207, backtracked=1490, end=0
search: maxDepth=68, constraints hit=0
choice gens: thread=41 (signal=0, lock=10, shared ref=28),

data=1444
heap: new=21524, released=11537, max live=3333,

gc-cycles=1480
instructions: 1677327
max memory: 81MB
loaded code: classes=404, methods=4959

Fig. 5. Robot Manager Verification Results

or very complex, including checking for deadlocks and race
conditions. It is important to mention that assertions are
written in Java and are part of the verified application. As a
result, they can also be used to verify the application during
runtime by traditional testing techniques. In a last step, we
also created JUnit [5] tests that run JPF-AWT according to
the specified scripts.

Applying JPF-AWT to this project confirmed the usefulness
of our approach. Despite the fact that the project already had
an extensive test suite, our method found 12 previously un-
known errors. We also achieved significantly better coverage,
increasing the number of verified user scenarios from 370
to more than 28,000. The effort to create scripts, assertions
and JUnit tests was comparable to the effort to develop the
existing test suite (which did not catch the defects). The only
observable downside was an increase in test time from seconds
to minutes, which is in our opinion an acceptable trade-off.

V. CONCLUSION

We presented JPF-AWT, an extension of the Java PathFinder
software model checker to efficiently verify potentially large
GUI applications. Given a script specifying sequences of user

inputs, JPF-AWT can directly check the unmodified, compiled
application. JPF-AWT preserves the threading structure of
the system under test, and can therefore find defects that
are caused by complex interaction between user inputs and
scheduling sequences. JPF-AWT has been successfully applied
to a large NASA ground data system, finding defects that had
escaped conventional testing.

Planned future work includes extensions of the input script-
ing language and extraction of initial scripts using capture-
replay or runtime techniques (e.g., [7], [8]).

REFERENCES

[1] G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder – a second
generation of a Java model-checker. In Proceedings of the Workshop on
Advances in Verification, July 2000.

[2] M. B. Dwyer, Robby, O. Tkachuk, and W. Visser. Analyzing interaction
orderings with model checking. In ASE’04: Proceedings of the 19th
IEEE international Conference on Automated Software Engineering,
pages 154–163. IEEE Computer Society, 2004.

[3] Java PathFinder. Website. http://babelfish.arc.nasa.gov/trac/jpf.
[4] jfcUnit. Website. http://jfcunit.sourceforge.net/.
[5] JUnit. Website. http://www.junit.org.
[6] Marathon. Website. http://sourceforge.net/projects/marathonman.
[7] A. Memon, I. Banerjee, and A. Nagarajan. Gui ripping: Reverse

engineering of graphical user interfaces for testing. In WCRE ’03:
Proceedings of the 10th Working Conference on Reverse Engineering,
page 260. IEEE Computer Society, 2003.

[8] A. M. Memon and Q. Xie. Studying the fault-detection effectiveness
of GUI test cases for rapidly evolving software. IEEE Transactions on
Software Engineering, 31(10):884–896, 2005.

[9] SeleniumIDE. Website. http://seleniumhq.org/projects/ide.
[10] SUN. Abstract Windowing Toolkit. http://java.sun.com/products/jdk/

awt/.
[11] SUN. Swing. http://download.oracle.com/javase/6/docs/technotes/

guides/swing/.
[12] UISpec4J. Website. http://www.uispec4j.org.
[13] T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: Using gui screenshots

for search and automation. In Proceedings of the 22nd Annual ACM
Symposium on User Interface Software and Technology, UIST ’09, pages
183–192, New York, NY, USA, 2009. ACM.

[14] X. Yuan, M. B. Cohen, and A. M. Memon. Gui interaction testing: In-
corporating event context. IEEE Transactions on Software Engineering,
37(4):559–574, 2011.

